AI如何影响游戏行业?
激石Pepperstone(http://www.paraat.net/)报道:
年初以来,AIGC浪潮引发市场对AI赋能游戏行业的关注。我们认为AI技术将从生产端与体验端两方面推动游戏变革与创新,实现研运提效、玩法创新。本篇报告就生产端AI赋能的环节与落地节奏、体验端AI原生玩法的创新方向与驱动力、厂商侧的应用落地情况及后续发展进行探讨。
AI如何影响游戏行业?——生产端提质增效,体验端探索创新。我们认为将从生产与体验两个维度赋能游戏产业:
► 游戏生产方面,我们认为当前游戏行业产能部分受限于自动化生产工具缺失,而AI技术有望赋能工具链,推动行业生产自动化、标准化、规模化,使游戏产业走向工业化、突破产能瓶颈。具体来看,我们认为将体现在游戏研发、运营及研运贯通维度的提质增效。
► 游戏体验方面,我们认为AI技术拓展了游戏更多元、个性和沉浸的可能性,当前AIGC原生游戏及创新玩法已有雏形,核心围绕AIGC的自然语言输出、图像输出及智能NPC能力。此外,我们认为若AIGC工具普及、生产力大幅提升,玩法差异化或成为厂商的核心竞争要素,亦将促使更多新玩法产生。
游戏行业的AI技术应用发展到什么阶段?——逐步完成前期投入建设。从AI的“应用方式”“使用工具”“产出效果”三个维度来看,我们认为,AI赋能游戏工业化管线大致遵循前期投入建设、初期全管线贯通和中期产生效能的实际落地节奏。网易等多家游戏厂商已在不同程度上将AI工具落地于研运多环节中,并逐步从研运增效向AI拓展玩法延伸;头部厂商开始布局AI生产管线,在研运全流程贯通AI应用。
如何展望游戏行业后续竞争趋势?——强者恒强,产品端更加重视内容价值。我们认为AIGC工具普及后,游戏行业在生产端或体现出生产力丰富、生产门槛显著降低的特点,行业内优质单品打通、占据单一赛道的可能性将逐步提升。对厂商而言,其竞争方向或转为对玩法不断细分,通过差异化占据独特赛道、维护核心用户。进一步地,我们认为,具备核心创意能力、深刻用户认知的头部厂商有望维持竞争优势。
正文
游戏生产:AI构建自动化工具,加速游戏工业化落地
如何理解AI赋能游戏生产:AI是游戏行业突破工业化瓶颈的重要助力
AI工具是游戏工业化进程的重要一环,提供自动化工具并实现标准统一。我们总结产业内、学术界等各方对“游戏工业化”的定义与理解,认为游戏工业化的特点包括:标准化、自动化、规模化;而实现游戏工业化的方式主要包括:1)建立高度分工的秩序流程;2)设立统一标准;3)发明、使用自动化生产工具。
我们认为,当前游戏行业已实现高度分工,但在标准和工具上仍呈现出劳动密集型特点,即,“标准与人的判断相关”、“工具需要人工高度参与”。
我们认为,AI工具首先将作为自动化工具,有望大幅降低人工在游戏生产中的参与度;自动化生产工具同时带来产出的可控、可复制,实现游戏产出标准化;产出标准化与自动化使规模化成为可能,推动行业生产实现工业化。
游戏产业已高度分工,头部厂商实现规律性产出,但仍面临产能瓶颈
► 从工业化进程来看,我们认为当前游戏行业已经进行了高度分工,游戏产业流程细化、专业化,如已形成专业化的游戏策划、游戏程序及游戏美术等人员;行业内已有通用的生成工具,对大部分生产环节的标准有共识。
►从产能角度,我们认为游戏行业的头部厂商通过高度分工、相对标准化的流程及工具使用,已经实现规律性产出,但即使是头部厂商仍面临产能瓶颈。
我们认为游戏行业产能受限的原因之一系缺失自动化生产工具。AI或将作为游戏工业化中的自动化工具,帮助突破产能瓶颈。
AI赋能游戏工业化在游戏研发、运营及生产流程贯通上均有体现
研发环节:长期看产能突破将是AI工具应用的核心价值点
行业头部厂商较早布局AI,生成式AI推动AI技术应用走向研发的核心环节。我们认为,生成式AI在游戏研发中有望对内容生产方式进行突破。当前游戏行业对于AIGC于研发中的应用进行积极尝试,包括AI生成地图与关卡、剧情文本、美术资源等。
我们认为AIGC工具对于研发端的提升主要体现在降本增效。从降本角度,除应用于素材生成、降低产出环节成本外,我们认为AIGC工具于团队沟通、产出试错方面的应用亦值得关注。AIGC工具显著提升了素材初稿的产出效率,我们认为一方面可在行业高度分工时帮助传达上下游需求,另一方面可以较低成本、较快速度对研发方向的可行性进行初步验证。从增效角度,我们认为主要体现于产能提升、创意丰富两个维度:1)沟通和试错成本、产出成本的下降共同提升产能;2)AIGC工具可以根据需求批量产出文字或图像素材,为研发人员提供创意参考。但当前AIGC工具无法直接实现产出质量的提升,如Midjourney的产出与游戏原画需求仍有差距。
相比降本,行业或更关注AIGC带来的产能提升。我们认为,受限于技术能力、产出精细度的不足,从降本维度测算AIGC带来的成本节省或仍有限;但AIGC应用有望推动行业产出规模与质量提升。从降本的实际落地环节来看,当前较大受益于AIGC的研发环节为游戏美术中的2D美术,但在游戏美术的其他环节,如原画设计、3D模型、动作与特效等,AIGC工具的产出精细度不足或未能实现技术突破。从行业视角,我们认为游戏行业处于供给驱动需求阶段,高品质供给或为单厂商及行业整体收入规模提升的驱动因素。虽然AIGC工具无法直接实现高质量产出,但我们认为有望通过代替重复性人工的方式,释放更多劳动力用于创意型、高质量产出,从而推动行业产出规模与产出质量提升。
运营环节:决策式AI应用成熟,生成式AI实现自动化工具链闭环
决策式AI工具在游戏运营中应用成熟,生成式AI实现工具闭环。我们认为,相比于研发环节,游戏运营及推广环节的内容属性较弱,决策式AI在这些环节中的应用已相对成熟,主要体现在数据分析、实时监测及AI对战机器人等方面,如使用AI智能机器人实现对局匹配平衡、基于AI实现买量中的数据监测与动态调整、利用AI工具进行用户分析等。我们认为,生成式AI对运营推广环节可能带来的提升在于:实现运营环节的自动化工具链闭环。举例来说,买量环节中投放模型、投放渠道已实现动态调整,但投放素材仍需人工产出,成为买量推广效率的限制因素;应用AIGC工具则能实现从素材到投放的自动化闭环,有望助力AI化的运营工具更好释放效能。此外,AIGC工具还可能在本地化翻译、游戏社区运营中实现应用。
研运贯通:基于同一套AI工具实现数据与资产贯通
AI工具链有望在研发和运营环节间打通,提升协同效率。我们认为,AI对游戏生产端的赋能还可能体现在研发、运营的贯通上。若研发端和运营端在分析、产出上使用一套工具,研发、运营环节中数据与资产可以互通:1)素材复用:如游戏研发中的美术资源可以直接用在买量素材制作中;2)数据反馈:运营端的数据反馈至研发端,对研发方向提供参考和指导。
AI赋能工业化管线的实际落地节奏:前期投入建设、初期全管线贯通、中期产生效能
从AI的“应用方式”“使用工具”“产出效果”三个维度来看,我们认为,AI赋能游戏工业化管线可能遵循前期投入建设、初期全管线贯通和中期产生效能的实际落地节奏。我们认为当前AI在游戏工业化的应用处于前期投入建设末期、全管线建设初期。
游戏体验:AI技术能力与厂商差异化竞争催生创新玩法
可行性:AI技术拓展游戏的可能性,有望驱动产生创新玩法
我们认为,围绕AI的自然语言生成、图像生成、智能NPC能力,AIGC原生游戏及创新玩法已有雏形:
游戏玩法创新的核心在于满足用户对于游戏乐趣的需求。我们认为,游戏玩法演变的核心驱动力是满足特定的游戏需求,强化游戏乐趣。游戏玩法的演变过程,往往是强化某一种或某几种乐趣的过程;新玩法的产生,就是从已有的玩法中寻求可强化的乐趣点并将其塑造为核心玩法。
AI使游戏体验更为多元化、个性化、强交互,有望驱动游戏玩法和品类的变革。展望未来,我们认为,AI技术有望持续基于其内容产出、智能控制能力,围绕多元、个性与交互,持续加深游戏核心乐趣,或将驱动游戏玩法变革。
必要性:AIGC时代创新玩法与差异化成为厂商核心竞争要素
AIGC工具普及后,差异化内容/玩法创意、细分赛道捕捉能力或成为厂商核心竞争力。我们认为AIGC工具普及后,游戏行业或从生产端体现出以下特点:1)生产力大幅提升,自动化工具的应用使行业规模化生产成为可能;2)生产门槛降低,AIGC工具的普及和通用使得常规内容易被复制和产出。结合游戏产品边际成本接近于零的特点,我们判断行业“赢家通吃”的现象将放大,即同一细分领域内只有一款或个位数的头部产品能实现持续运营、商业化。当前同一细分赛道仍能存活数款产品,原因在于头部产品的内容产出无法完全满足用户需求,用户在头部产品的“长草期”将注意力转移至次头部的同类产品。若头部产品的内容迭代能完全满足用户需求、“赢家通吃”现象放大,统一细分领域或将仅存一款或低个位数的产品;厂商的竞争方向或转为对玩法不断细分,通过差异化占据独特赛道、维护核心用户。
基于上述分析,我们认为在AI工具显著提升行业生产力、降低生产门槛的背景下,玩法、创意的差异化能力成为厂商的竞争核心要素,从必要性的角度亦推动游戏行业持续演化出创新玩法。
公司分析:从研运提效向玩法创新,内外兼修谋发展
我们认为,对已有一定规模的中大型体量游戏厂商而言,AI工业化提效与玩法创新并行推进;对小型游戏厂商或工作室而言,能够借助第三方AI工具在更大自由度下进行玩法创新;对于专业性、工具化或底层架构的初创企业而言,则主要通过底层配置与创新,支持游戏及相关生态健康繁衍。
我们此处选择四家代表性游戏厂商进行详细分析,就各家在AI研运提效(内部架构、实际产品落地情况、核心策略)、AI原生玩法创新或“AI+”游戏内容、体验升级等方面进行介绍。
我们同时梳理其他已上市游戏公司、部分未上市游戏厂商及相关初创企业在AI方面的部署情况。需指出的是,技术发展、迭代、突破速度较为迅猛,我们的统计整理并不能完全穷尽当前的落地情况,仅为大家在梳理“AI+游戏”落地情况提供一定参考支持。
网易:强AI中台支持“AI+游戏”落地,AI要素内化于研运产线,积极探索玩法创新的可能性
“伏羲+互娱AI Lab”强AI中台支持“AI+游戏”落地。网易内部人工智能部门、架构或相关部署时间相对较早,在游戏的AI技术部署方面,主要支持部门为伏羲及互娱AI Lab,均属于相对偏中台部门(伏羲近几年亦演化出对外商业化路径),为项目组提供技术落地的支持。
具体来看:
► 伏羲:雷火旗下的“伏羲”于2017年9月成立,是中国第一家游戏人工智能研究实验室,致力于为游戏用户营造新世代游戏体验。随着平台发展,后逐步衍生出网易伏羲(实现产品化、商业化探索)、伏羲机器人(研究数字孪生、人机协作),在对内游戏产品支持之外亦支持对外游戏产品及其他多领域(文旅、教育等)AI落地应用,已于2021年7月发布游戏行业解决方案,支持AI辅助制作剧情动画、竞技机器人、对战匹配系统和反外挂系统四部分组件。在模型训练方面,伏羲目前已自研数十个预训练模型,其于2021年起打造“玉知”多模态理解大模型,在网易新闻、云音乐等多业务场景中落地验证。
► 互娱AI Lab:网易互娱AI Lab亦成立于2017年,主要支持对内网易互娱旗下游戏及产品技术升级,核心价值点包括实现美术降本增效、游戏体验革新、营销方法创新赋能及精细化运营管理等。近期平台亦在招聘如“AIGC关卡生成研究员”等岗位,以桥接AI Lab和《蛋仔派对》项目组,推动更多AI技术在游戏内的落地上线。
研运提效:较早应用AI于研运全流程中,AIGC辅助内容生产提效。自决策式AI时代,公司即应用AI于游戏开发(用户研究、游戏测试等)、安全管控(反外挂等)、游戏推荐/匹配系统设置(用户画像、用户游戏行为画像匹配、对战策略匹配等)等环节中。至生成式AI阶段,公司当前已在管线中较大规模应用相关工具实现提质增效,可支持文字、音频、动画等内容生成。公司亦表示,其自研AI技术已应用于游戏工业化全流程,对关键环节的工作效率提升高达90%。我们认为最直接的表现在以下几个方面:
► 中长尾内容生产诉求的快速满足。中长尾内容主要指精细度要求有限、内容生产数量相对较大的资产,如道具/物品图标icon、UI设计、部分NPC表情等。对于这部分内容,公司当前已实现部分资产的AI自动化生成,如在《逆水寒》手游中部分对话的AI NPC表情生成(主要依靠伏羲)、CC业务线部分icon生成等。
► 语音、动作的自动化绑定以提升角色制作效率。这部分主要涉及视频动作捕捉、语音合成、动画合成等。从工具角度看,网易互娱AI Lab已推出多款自研AI提效工具,覆盖AI语音生成、视频动捕等多环节。例如,利用表情绑定和驱动技术,可以实现角色制作过程中的表情自动绑定,用AI技术代替传统面部捕捉的方式,提升制作效率;利用AI视频动捕工具“AIxPose”则可以实现对视频动作的一键提取及迁移等;借助语音合成工具批量生产大量游戏配音等。
► 概念设计快速验证,降低沟通成本。具体包括:1)原画师初稿的快速实现(“图生图”逻辑);2)提供海量素材参考,协助人物形象、服装、建筑环境等精细化设计,推动完善原画;3)游戏策划借助文生图等实现其创意概念的初步描述呈现,使游戏美术更好地理解内涵,降低沟通成本,使创意实现变得更加流畅。此前网易高级副总裁胡志鹏亦在“2022网易未来大会”上指出,《逆水寒》与稻城亚丁元宇宙联动中,即大量运用AI进行建筑环境等设计,实现工作量的节省与成本的降低。
玩法创新:探索AI NPC、AI+UGC等游戏内部玩法或生态创新点。我们在此前已提及公司较早进行AI技术部署,并在游戏研发的过程中融入AI技术,在多款游戏中尝试借助AI实现玩法创新,比较典型的包括:
► AI NPC:当前已在逐步从最基础的“连续、有内容对话”向与游戏性更深度结合、“影响剧情走向、创新游戏体验”的方向深入。
► AI+UGC:网易在今年“5·20游戏年度发布会”的多个游戏中均提出在UGC游戏用户内容共创方面的规划。网易当前亦积极借助AI技术降低游戏用户设计门槛,以激发内容创意,推动内容供给提升。
三七互娱:AI赋能研运中台工业化管线,外延投资探索玩法创新
研运提效:九大中台产品贯穿研运全流程,AI辅助平衡性测试、内容生产等多环节提效。公司在流量运营的优势上,通过中台产品布局提升自身研发、运营工业化水平,并在近年间不断通过决策式AI、生成式AI进行技术迭代优化,提升工业化管线的智能化程度,实现效率提升、资产积累。
公司当前业务线架构主要包括:研发(三七游戏)、发行(37手游、37网游及37GAMES),并由公司技术部门等支持内部技术向业务(包括部分中台产品、风控系统、监控系统、基础数据平台等设计与维护),参与包括“图灵”等在内的多个研运中台产品的创设及运维工作。
► 研发:“1+3+1”架构,AI大数据算力研发中台+三大数据分析工具+AI研发平台。研发品牌“三七游戏”下主要包括多个工作室、美术中心、运营部门及技术部门等。通用工具包括游戏研发中台“宙斯”、平台级大数据系统“雅典娜”“波塞冬”“阿瑞斯”及AI研发平台“丘比特”。
从发展顺序来看,前四大中台产品部署相对较早,先期背后运营逻辑主要系决策式AI,在较大规模的数据积累下借助已有数据进行分析、判断、预测,对用户行为轨迹、运营数据等建立标签、进行模型化积累,实现精细化数据管理,为后续游戏内部生态平衡性、玩法创新等奠定数据基础。
公司近年逐步将生成式AI内嵌至中台管线中,如AI研发平台“丘比特”即在研发精细化与智能化、研发提效及运营增长等方面对生成式AI等有所应用。
► 发行:大数据及AI工具贯穿前期内容/素材生产、中期投放与后端运营,同时兼有数字化市场研究,强化AIGC本地化部署以实现提质增效。发行线则主要借助智能化投放平台“量子”、智能化运营分析平台“天机”及美术设计中台“图灵”等,同时有游戏市场情报系统“易览”来支持对竞品、行业整体投放情况、偏好等方面的分析。
公司自2019年起即运用智能化投放及运营平台“量子”“天机”在用户获取端降低单用户获取成本、在用户运营端提升单用户生命周期总价值,共同推动买量投资回报率提升,已实现流量运营闭环。公司同时借助AIGC将原先的美术设计中台“天工”进行升级迭代为“图灵”,将AIGC与算力绑定,以实现本地化部署的工作流程,推动更好的美术资产存储、可视化及调用,提升内容生产效能,加大发行侧素材供给。
截至目前,公司已形成了“前期内容生产(图灵)-中期投放(量子)-后端运营(天机)”+“游戏市场情报系统(易览)”的发行侧全链路部署。
玩法创新:短期借外延投资实现玩法创新探索,中长期或有望通过内部创新实现更大突破。公司于2022年投资低代码3D内容创作与游戏社交平台YAHAHA Studio,该平台支持创作者快速建立3D互动内容,加速推进UGC生态。
完美世界:AI参与生产管线,技术中心初探复合应用AI in GamePlay
内部成立AI中心,自上而下贯彻AI提质增效。完美世界是国内老牌游戏研发商,拥有相对庞大、扎实的研发团队,技术、数据、美术等中台部门强赋能至项目组,推动实现自研/三方引擎技术的落地使用、美术技术支持等。在AI方面,公司较早进行小规模人员技术尝试,今年一季度起在内部成立AI中心,由公司游戏业务CEO负责,中台技术部门牵头,各项目制作人参与,以研究及推行AI技术的学习与应用。
研运提效:已将AI技术应用于研发管线多环节。主要包括几个方向:
► 概念与基础素材的直接输出、直观呈现。可使美术功底相对较弱的项目团队成员(如策划等)直接输出分镜需求等基础素材或概念。
► 研发侧生产工具升级。团队针对不同类型AIGC工具、不同项目需求进行有针对性训练,以推出适合细分赛道、类型的模型,加速相关图标、动画、材质等制作生成。例如,可辅助场景搭建、为引擎生成制定功能的材质节点等。
玩法创新:AI NPC、AI Bot已有落地并持续升级,技术中台探索AI原生游戏。在玩法创新方面,公司此前已有AI NPC探索,主要集中在神态表情等方面,如在《梦幻新诛仙》中采用智能NPC与反向动力学技术,在NPC微表情上进行更真实的塑造,让游戏用户的交互体验更加沉浸。近期公司亦公开介绍其技术中心在AI原生游戏上的探索,已有AI侦探游戏的初级demo,游戏内所有场景、美术、角色设定、剧情等均由AI完成,初步实现AI原生玩法设定。公司亦表示将在待上线游戏《神魔大陆2》中落地智能NPC。
巨人网络:组建AI团队支持内部业务场景的工具普及,探索“游戏+AI”玩法创新
AI战略定位重视程度高,内部已组建团队普及技术工具,在多赛道探索融合性玩法。从团队架构角度,公司于2019年即成立AI实验室部门,布局前沿技术创新。根据今年5月公司公告,公司亦表示已组建了AI团队,负责推动AIGC工具在全公司范围内各业务场景的普及落地,以期降低研运成本,提高研发效能。从实际落地情况上,公司创始人史玉柱在6月“征途嘉年华”表示,在《原始征途》游戏研发过程中,美术、程序人员已在使用AI技术提升研发效率。
在具体的玩法创新层面,公司结合各赛道特征进行初步尝试与落地。
► 休闲竞技赛道:《球球》探索UGC+AI,《太空行动》尝试多类AI玩法/功能辅助。
• 《球球大作战》于今年5月上线UGC制作工具。公司同时表示,《球球大作战》UGC玩法与AI的结合将是未来重点发力的方向,公司正在探索用AI以自然语言界面的方式帮助用户更有效地创造地图、玩法。
向前追溯,此前在《球球大作战》中已有决策式AI落地,如AI匹配对手、平衡性控制等,公司亦于2021年末与商汤、上汽人工智能实验室等以《球球大作战》为主要测试平台,联合主办“Go-Bigger多智能体决策智能挑战赛”,探索决策式AI开源技术生态。
• 《太空行动》方面,公司表示“太空杀”游戏本身与生成式大模型的特点相匹配,公司正在积极探索其玩法与AI技术的有机结合。
► “征途”赛道:多款MMO游戏已启动智能NPC探索,或有望借助AI尝试“千人千面”的运营方式。对于前者,公司表示计划通过AI技术观察和收集能够反映游戏用户行为和决策过程的数据,根据游戏规则和环境进行建模,并通过反馈,不断优化和改进AI模型,以期实现与游戏用户形成多样化的拟真交互。